

#### "Limnology 101" and the Pine Lake Plan

Norman Yan FRSC

Senior Research Scholar, York University Chair, Friends of the Muskoka Watershed

#### What I can, and can't contribute

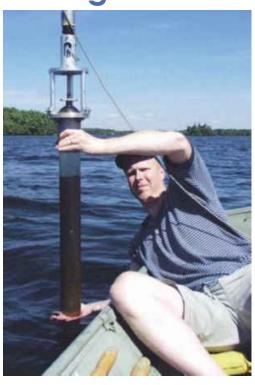
- I have no particular expertise in managing swimming, boating, fishing, septic systems or development
- I'm a limnologist, environment scientist and plankton biologist
- I've work on environmental issues facing our lakes for 4 decades

# In developing a lake plan, a limnologist might consider..

- 1. What was the condition of the lake before we arrived?
- 2. How sensitive is the lake to human impacts?
- 3. What are the current local, regional and international threats to the lake, and are they reducing or worsening?
- 4. What are the suspected future threats?
- 5. What should we do to protect the lake from ongoing and future threats?

## 1. What was the natural, predevelopment condition of the lake?

#### Possible approaches


- Actual records
- Space for time substitution
- Geochemical models
- Paleolimnological assessment

#### The Unfortunate Reality

- Don't exist
- Complicated by other stressors
- Only for a few metrics, such as pH
- Very useful but \$\$

#### The Paleolimnological Approach\*

Taking the core



#### Sectioning the core



\*Photos from Queen's U

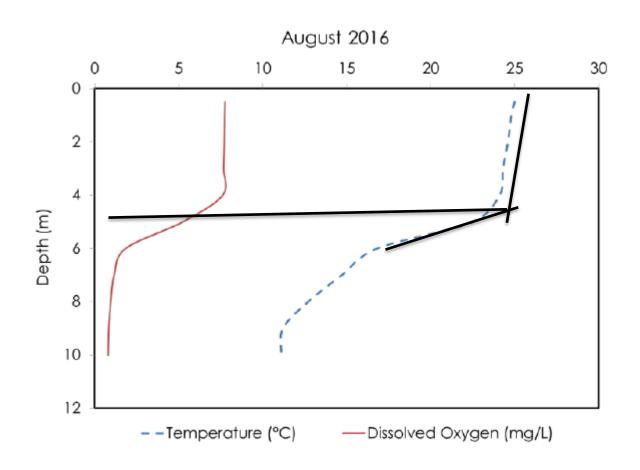
# 2. How inherently sensitive is the lake to human impacts?



- It's "young", and on the Canadian Shield
- It's located downwind of industrial North America
- It's oriented east-west, with a largish watershed
- It's long but narrow, and relatively shallow
- There's a neighbouring highway and cottages

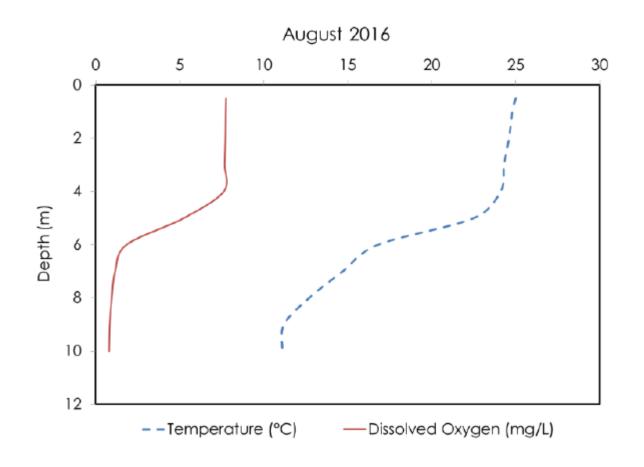


## Implications of lake orientation and the wind


- Surface waters move downwind at 1.5% of wind speed
- Typical wind speeds are 15 km/hour or 360 km/day
- Surface waters typically move 5.4 km/day, i.e. the length of the lake
- Lake water is not a static pool!

#### Implications of lake size on mixing

- Mixing depth (m) =  $4*\sqrt{\text{Fetch (km)}}$
- Fetch of the main basin is about
   1.5 km
- So mixing depth should be ~5 m.




#### Pine Lake mixing depth in Aug 2016





#### Lake depth and deep water oxygen





### Deep-water hypoxia and anoxia

- It's mostly natural
- It does increase vulnerability to algal blooms especially in the fall
- It eliminates cold water habitat for many species
- It might make the lake more vulnerable to additional development, as it likely reduces sedimentary retention of phosphorus

## Watershed size is also important

- It controls water and pollutant retention time
- Annual water load (AWL)= (precipitation-evaporation)
   \* (watershed + lake area)
- Retention time (RT) = AWL/Lake volume (V)
- Pine Lake is 156 ha, the watershed is 1530 ha, Precipevap = 0.5 m, so AWL = 8,430,000 m<sup>3</sup>
- Assuming a mean depth of 5 m,  $V = 7,800,000 \text{ m}^3$
- So RT = 7.8/8.4 or about 0.9 years, the length of time a
  pollutant will stay in the lake
- But the time to fully respond to a change in input is roughly 3RT's or about 3 years in Pine Lake.

## Summary of inherent sensitivity

- Pine Lake responds fairly quickly to watershed inputs, i.e. 3 years
- Soluble pollutants will spread rapidly in the lake given the fetch and wind direction
- It naturally experiences deep water anoxia, which might lead to TP return and algal blooms, and removes deep water fish habitat
- It warms up quickly as it is shallow and somewhat coloured. This leads to surface heating

#### 3. What is the status of known threats?

- Acid rain, lead pollution and DDT are no longer issues in the region
- Ozone depletion and UV damage aren't a problem given the colour of the lake water
- I'm not sure about mercury in the fish, but if it's an issue it will recover slowly
- Eutrophication is improving in the region, but needs constant management
- Zebra mussels are not a threat, and have likely been unsuccessfully introduced already
- Has the spiny water flea caused problems, eg. increasing accumulations of jellied plankton?

#### 4. What are the emerging threats?

- Road salt. Is chloride >50 mg/L?
- Calcium decline. Is calcium < 1.5 mg/L?</li>
- If the lake hits 28 or 29 °C some animals may die, and they may not be able to migrate to cooler waters, given the low oxygen levels of deep waters
- The interaction of TP and climate change in an anoxic lake may increase the risk of fall algal blooms
- How the spiny water flea might complicate this situation is unknown

#### 5. So what should be done?

- Develop a lake plan!
- Perhaps learn the natural history of the lake, with a paleolimnology profile, if affordable
- Participate in the Lake Partner program
- Understand the recognized threats, especially road salt and calcium decline
- Keep a look out for "jelly"
- If possible, supplement the District's and the Lake Partner program's documentation of status and trends, and
- Become a "Friend of the Muskoka Watershed"

## Vision of the Friends of the Muskoka Watershed

 to foster the understanding, choices, actions and wise management necessary to ensure the protection of our freshwater ecosystems forever.

## Our main programs

- HATSEO Hauling Ash To Solve Ecological Osteoporosis
- A Muskoka Freshwater Research Institute
- Environment Care: testing
   Muskoka waters

# Where can you learn more? www.fotmw.org

phone: 705 646-0111



# How can you help? Join us and become a friend



www.fotmw.org

